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ABSTRACT

The Enthalpy Based Thermal Evolution of Loops (EBTEL) approximate model for static and dynamic coronal loops is developed

to include the effect of a loop cross-sectional area which increases from the base of the transition region (TR) to the corona.

The TR is defined as the part of a loop between the top of the chromosphere and the location where thermal conduction changes

from an energy loss to an energy gain. There are significant differences from constant area loops due to the manner in which

the reduced volume of the TR responds to conductive and enthalpy fluxes from the corona. For static loops with modest area

variation the standard picture of loop energy balance is retained, with the corona and TR being primarily a balance between

heating and conductive losses in the corona, and downward conduction and radiation to space in the TR. As the area at the

loop apex increases, the TR becomes thicker and the density in TR and corona larger. For large apex areas, the coronal energy

balance changes to one primarily between heating and radiation, with conduction playing an increasingly unimportant role, and

the TR thickness becoming a significant fraction of the loop length. Approximate scaling laws are derived that give agreement

with full numerical solutions for the density, but not the temperature. For non-uniform areas, dynamic loops have a higher

peak temperature and are denser in the radiative cooling phase by of order 50% than the constant area case for the examples

considered. They also show a final rapid cooling and draining once the temperature approaches 1 MK. Although the magnitude

of the emission measure will be enhanced in the radiative phase, there is little change in the important observational diagnostic

of its temperature dependence.

Key words: Sun: corona - Sun: magnetic fields

1 INTRODUCTION

The magnetically closed solar corona has been the subject of mod-

elling efforts for almost five decades. The structures observed there,

both the easily distinguished loops and the more diffuse background,

have a wide range of temperature and brightness, depending on

whether they are in the quiet sun or active regions. [For simplicity

we refer to all such magnetically closed structures as loops.] In active

regions, spatially averaged fairly steady emission with temperatures

of up to 3 MK is detected (e.g. Warren et al. 2012). Such structures

are assumed to be heated by an as-yet-undetermined process, but al-

most certainly related to the coronal magnetic field (e.g. Reale 2014;

Klimchuk 2015). Whether this heating is highly impulsive, or close

to being steady, is as yet unknown, but there is in reality almost cer-

tainly a continuum of the quantity of energy released in such events

(e.g. De Moortel & Browning 2015). Note that the averaged steady

emission from active regions is likely to be the integrated signature

of many impulsive heating events (Cargill et al. 2015).

One common approach to modeling steady and impulsive coronal

heating involves solving numerically the one-dimensional hydrody-

namic equations along a magnetic field line in response to an imposed

★ Contact e-mail: pcargill@st-andrews.ac.uk

heating function (e.g. Reale 2014). The output of such models are

the density, temperature and velocity as a function of position and

time. In fact, this is very challenging, especially for dynamic models,

since the heat flux from the heated corona to the transition region

(TR) and upper chromosphere leads to very steep temperature gra-

dients in these lower regions: the temperature scale height, defined

as !) = )/|3)/3B|, can be as small as 100 m while the loop can

have a length of 100 Mm (e.g. Bradshaw & Cargill 2013). In turn

this requires a very fine numerical grid which imposes a severe limit

on the timestep in order to ensure stability of the heat conduction

solver. A coarse grid leads to major errors in the coronal density

arising from the heating (Bradshaw & Cargill 2013), although ap-

proximate ways of treating the TR (Lionello et al. 2009; Mikić et al.

2013; Johnston et al. 2017, 2020) can mitigate this.

An alternative approach is to use approximate methods for solving

the coronal hydrodynamic equations: early work was reviewed by

Cargill et al. (2012b) and over the last 15 years, our Enthalpy Based

Thermal Evolution of Loops (EBTEL) approach has been devel-

oped (Klimchuk et al. 2008; Cargill et al. 2012a, 2015; Barnes et al.

2016a,b). The essence of EBTEL is that an impulsively-heated loop

proceeds through three phases: first, in response to increasing coro-

nal heating, an enhanced heat flux enters the TR, which responds

by an upward mass flow into the corona, commonly referred to
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as "evaporation". Secondly, once enough plasma has evaporated,

coronal radiative losses increase to a time when the radiative and

conductive losses are roughly equal. Finally, as radiative losses be-

come dominant, the corona drains through an enthalpy flux to the

TR (Cargill et al. 2015). EBTEL is a zero-dimensional model that

solves for coronal averages of the temperature and density, with the

TR responding to heat and enthalpy fluxes to and from the corona.

In general it gives good agreement with a full 1D solution on a va-

riety of problems (Cargill et al. 2012a, 2015), one exception being

the early evolution of very impulsive (10 sec) electron heating bursts

(Barnes et al. 2016a).

In this paper, we enhance the EBTEL model to include a varia-

tion in the cross-sectional area of a loop. While some studies (e.g.

Klimchuk 2000) argue that there are also strong suggestions that the

cross-sections of observationally distinct loops are roughly constant,

it is clear that the magnetic field must diverge with height on aver-

age in the corona. The cross sections of observed loops may expand

preferentially in the line-of-sight direction, in which case it would

not be detected (Malanushenko & Schrĳver 2013), though this idea

has recently been questioned (Klimchuk & DeForest 2020). Further,

extrapolation of photospheric magnetograms sometimes gives large

area changes as one goes from chromsphere to corona (e.g. Mok et al.

2008; Asgari-Targhi et al. 2013). In developing the EBTEL model to

include this area change, it became apparent that the knowledge of the

physics of non-uniform area in static loops was incomplete despite

being discussed by a number of authors (e.g. Vesecky et al. 1979;

Levine & Pye 1980; Rabin 1991; Dudík et al. 2009; Martens 2010).

Thus a major part of this paper will address static loops, and in turn

this defines the range of applicability for the EBTEL model.

In Section 2 we derive the EBTEL equations for a non-uniform

area. Section 3 discusses static loop models, and Section 4 presents

the new dynamic EBTEL results. Appendix A addresses an addi-

tional approximation in EBTEL due to the non-uniform area and

Appendix B discusses the useful analytic approach to static loops of

Levine & Pye (1980) and Martens (2010).

2 THE EBTEL EQUATIONS WITH AN AREA VARIATION

The one-dimensional (along a field line with a coordinate s) energy

equation with a variation in the cross-sectional area �(B) is:

m�

mC
= −

1

�(B)

m

mB

(

�(B)E [� + ?] + �(B)�2

)

+& − =2
Λ()) (1)

in the usual notation with � = ?/(W − 1) + 1/2dE2 , �2 =

−^0)
5/23)/3B is the heat flux with ^0 = 8.12 × 10−7 in c.g.s. units,

Λ()) an optically thin radiative loss function (e.g. Klimchuk et al.

2008) and& (B, C) an imposed heating function. There is also the equa-

tion of state for a fully-ionised electron-proton plasma: ? = 2=:) .

The EBTEL method assumes that the upper solar atmosphere can

be split into two parts: a corona and a transition region (TR). The

length of the combined corona and TR (usually referred to as the

loop half-length) is defined as !, with B = 0 at the base of the TR

and B = ! at the apex. The top of the TR (defined as B = B0, with

quantities there denoted by subscript ‘0’) is defined as the location

where energy transport by thermal conduction changes from a loss to

a gain. Assuming subsonic flows, we follow Klimchuk et al. (2008)

and Cargill et al. (2012a) and integrate Eq (1) over the corona to

obtain:

�2!2

W − 1

3?2

3C
= �0

[

W

W − 1
E0?0 + �20

]

+ �2!2 [&2 − '2/!2] (2)

where subscript "c" denotes a coronal quantity so that !2 is the

distance from the top of the TR to the loop apex, and �2 the av-

erage of the area in the coronal segment. ?2 is the average coronal

pressure, with the pressure at the loop apex (?0) calculated in a

way that includes gravitational stratification (Cargill et al. 2012a)

. The heating & is assumed to be spatially uniform. At the loop

apex we impose symmetry conditions such that E = �2 = 0 there.

The integral of the radiative losses can be written formally as

'2 = 1/�2
∫

�(B)=2
Λ())3B (Klimchuk & Luna 2019), the spatial

integral is from B0 to the loop apex. Note that it has been assumed that

the spatial integral of the left hand side of Eq (1) can be written as the

product of the average coronal area and pressure. This is discussed

further in Appendix A.

Similarly, integrating over the TR gives:

�) '!) '

W − 1

3?) '

3C
= − �0

[

W

W − 1
E0?0 + �20

]

+ �) '!) ' [&) ' − ') '/!) ']

(3)

with E = �2 = 0 imposed at the base of the TR, subscript )'

denotes a TR quantity and ') ' is now an integral over the TR:

') ' = 1/�) '

∫

�(B)=2
Λ())3B.

We now set ?2 = ?) ' = ? and add these two equations to get:

[�2!2 + �) '!) ']

W − 1

3?

3C
=�2!2&2 + �) '!) '&) '

− [�2'2 + �) '') ']

(4)

Setting &) ' = &2 = & and defining !∗ = !2 + �) '!) '/�2 , we

obtain:

!∗

W − 1

3?

3C
= !∗& − '2 (1 + �1�) '/�2) (5)

where �1 = ') '/'2 , as in our earlier work. If we set �2 = �) '

then we recover:

!

W − 1

3?

3C
= !& − '2 (1 +�1) (6)

with ! = !2 + !) ' , the EBTEL pressure equation from our earlier

papers1.

The equation for the coronal density is given by:

m=

mC
= −

1

�(B)

m

mB
(=E�(B)) (7)

which integrating over the corona and using the equation of state

gives:

�2!2
3=

3C
= =0E0�0 =

?E0�0

2:)0
(8)

where = is now the coronal average. Again we have written the

integral of the left hand of Eq (7) as the product of the average area

and average density, as discussed in Appendix A. We then use the

TR energy equation (3) to solve for ?E0�0 such that:

W

W − 1
�0?E0 = −

[

�0�20 +
�) ''2!2

!∗
(�1 − !) '/!2)

]

(9)

where Eq (5) is also used: the same result arises from using (2) and

(5). This then gives:

�2!2
3=

3C
= −

W − 1

2:W)0

[

�0�20 + �) ''2
!2

!∗

(

�1 −
!) '

!2

)]

(10)

1 Note that Klimchuk et al. (2008) did not distinguish between ! and !2 .
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Setting �2 = �0 = �) ' gives:

3=

3C
= −

W − 1

2:W)0!2

[

�20 + '2
!2

!

(

�1 −
!) '

!2

) ]

(11)

which is the same as in the earlier papers except for the correction

!) '/!2 on the right hand side due to the change in the TR pressure.

For uniform area loops, !) '/!2 is of order 0.1 - 0.2, so is a small

correction during most phases of evolution. However during radiative

cooling�1 may be< 1 (Cargill et al. 2012a), so it could be significant

and is retained in the modelling. Note also the presence of !2 instead

of ! in the leading rhs coefficient and also in the definition of �0 =

−2/7^0)
7/2
0 /!2 , where )0 is the apex temperature.

To solve these equations, we remove )0 by defining two constants:

�2 = )/)0 and �3 = )0/)0 , where T is now the coronal average, so

that EBTEL solves:

1

W − 1

3?

3C
= & − (!2/!

∗)=2
Λ(1 +�1�) '/�2) (12)

and

3=

3C
= −

�2 (W − 1)

2:W)!2�3

[

�0

�2
�20 +

�) '

�2
=2
Λ
!2
2

!∗

(

�1 −
!) '

!2

)

]

(13)

Two area ratios arise and the three constants �1, �2 and �3 are

discussed fully in our earlier work. For constant area, �2 = 0.9

and �3 = 0.6 at all times. �1 is allowed to vary with time such

that �1 = 2 when the loop density reaches its maximum, �1 >

2 when conduction dominates radiation (Barnes et al. 2016a) and

�1 < 2 when radiation dominates (Cargill et al. 2012a).�1 is further

modified when gravitational stratification is included (Cargill et al.

2012a).

3 STATIC LOOP RESULTS

Static loop models are of interest because (a) EBTEL relies on

them for the determination of �1 and (b) with the exception of

Vesecky et al. (1979), previous work has not addressed the changes

in the physics due to area variations. Two approaches are used. One

develops scaling laws based on the EBTEL equations and the second

considers solutions to the static energy balance equation.

3.1 Scaling laws

We can write approximate scaling laws using Eq (12) and (13) in the

static limit:

=2
= (!∗/!2)&/[Λ(1 + �1�) '/�2)] (14)

)
7/2
0 = (7!2

2&/2^0)(�) '/�0)

[

�1 − !) '/!2

1 + �1 (�) '/�2)

]

(15)

or

& = (2^0)
7/2
0 /7!2

2)(�0/�) ')

[

(1 + �1�) '/�2)

�1 − (!) '/!2)

]

(16)

The recent scaling laws of Klimchuk & Luna (2019) who also con-

sidered an area variation (Eq (5) and (11) of that paper), can be

obtained by setting !) ' = 0 and !2 = !. It is assumed implicitly

that �) ' 6 �0 6 �2 .

We return to the scaling laws in Section 3.5 but it is important

to note that they are only approximate solutions to the energy equa-

tion. This should be contrasted with those presented by Martens

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 s (cm) 109

1

1.5

2

2.5

3

3.5

4

4.5

5

A
(s

)

s
a
 increasing

Figure 1. The normalised area profile given by Eq (17) as B0 increases from

0.05L (leftmost curve) to 0.95L (rightmost).

(2010) and discussed in Appendix B which are an exact analytic

solution, provided a single power law radiative loss function, and a

cross-sectional area satisfying Eq (B1) are used. The difference lies

primarily in the numerical coefficients rather than the relationship

between quantities such as )0 , & and !. The exact solution repre-

sents the role of the entire atmospheric structure in balancing heating

and radiation throughout the loop.

3.2 Example with small and moderate area variations

We consider the following normalised area profile (A(s)) in terms of

the function f(s):

�(B) = 5 (B), 5 (B) = 1 + 51B8=
2 (cB/2B0 ), B < B0 ,

5 (B) = 1 + 51, B > B0
(17)

B0 = ! is a loop with a smooth area change along its entire length and

by decreasing B0 from ! to small values, we force the area change

to be more localised at the loop base. Figure 1 shows �(B) as B0
increases from 0.05! to 0.95! for 51 = 4.

We solve eq (1) numerically using a high-order Runge-Kutta

scheme with m/mC and E set to zero and a prescribed cross-sectional

area of the loop subject to a fixed chromospheric temperature at a

point B = 0 (taken as 3 × 104K), and a vanishing heat flux at the

loop apex (B = !). The heat flux at the base also vanishes. Solution

of Eq (1) then requires specification of two of the following: !, &,

) (B = !) = )0, =(B = !) = =0 so that this is an eigenvalue problem

(Martens 2010), with the other two quantities determined by the need

to satisfy the boundary conditions. The Sun will specify & and !, so

that an iterative solution of (1) gives )0 and =0 once the boundary

condition at the loop apex is satisfied. Alternatively, it is sometimes

convenient to specify )0 and ! and determine & and =0 . We specify

! and & and calculate )0 and =0
2.

The energy equation can be written in the following form:

3

3B

(

^0)
5/2 3)

3B

)

+ ^0)
5/2 3)

3B

1

�(B)

3�

3B
+& − =2

Λ()) = 0 (18)

2 Despite its extensive use in the literature, we do not adopt the pressure

as an output parameter. )0 and =0 are, in principle, measurable quantities,

whereas ? is not.

MNRAS 000, 1–10 (2020)



4 P.J. Cargill et al

1 2 3 4 5 6
0.5

1

1.5

 n
 (

cm
-3

)

109

1 2 3 4 5 6
0

2

4

A
re

a
1 2 3 4 5 6

1

1.5

2

2.5

T
 (

K
)

106

1 2 3 4 5 6
1

2

3

4

5

C
1

1 2 3 4 5 6

1 + f
1

0.1

0.15

0.2

0.25

L
T

R
/L

1 2 3 4 5 6

1 + f
1

0

2

4

6

8

C
/R

 (
s=

L)
(1)

(3) (4)

(5)

(2)

(6)

Figure 2. Loop properties showing the effect of increasing the cross-section

at the loop apex: the horizontal axis is 1+ 51. The loop has 2L = 100 Mm and

& = 3.67× 10−4 ergs cm−3 s−1. The six panels show (1) the apex density,(2)

the area factors �2 (+) and �0 (>). �) ' (not shown) increases from 1 to

1.2, (3) )0 (stars) and )0 (circles), (4) �1 , (5) the ratio of conductive (C)

to radiative (R) losses at the apex (�/' (B = !)), and (6) the ratio of TR

thickness to loop half-length. The black (red) symbols denote solutions where

gravity is not (is) included.

For a loop with a monotonically increasing temperature and an area

that increases from base to apex, the second term is always positive

and so can be viewed as an effective "heating", as was noted by

Vesecky et al. (1979). What this means is that all else being equal,

a loop with an area divergence will have a higher pressure than

one with uniform area: more "heating" does not necessarily imply a

higher apex temperature.

We begin by considering a loop of half-length 50 Mm, B0 = !, and

vary the parameter 51 between 0 and 5 so that the maximum apex area

is six times larger than the base.& = 3.67×10−4 ergs cm−3 s−1 which

gives )0 of order 2 MK. Gravity is neglected for the moment and a

single power-law loss function of the formΛ()) = 1.95×10−18)−2/3

is used3 . Other loss functions are discussed later.

Figures 2 and 3 show the results. The six panels of figure 2 show:

=0 in panel 1, �2 (plus sign) and �0 (circle) in panel 2, )0 (star) and

)0 (circle) in panel 3, the ratio�1 in panel 4, the ratio of conductive to

radiative losses at B = ! in panel 5 and !) '/! in panel 6. For clarity

�) ' is not shown but increases from 1 to 1.2. )0 is the temperature

at the top of the TR and the averages �2 and �) ' are obtained a

posteriori once the location of the top of the TR is determined. In

panels 1, 3, 4 and 5, the black stars denote results when gravity is

excluded. The upper two panels of Figure 3 show the conductive,

radiative and heating terms in the energy equation as a function of

distance for 51 = 0 (left) and 1+ 51 = 6 (right). As the cross-sectional

area at the apex increases we find (a) larger =0 , (b) slightly larger )0,

(c) a thicker transition region and (d) a slightly enhanced ratio of TR

to coronal radiation per unit area, as represented by �1. The first of

these was also found by Vesecky et al. (1979).

3 The choice of a -2/3 power as opposed to the more usual -1/2 one is for

consistency with our earlier work. Different coefficients lead to changes to

the numerical values presented below, not to the underlying physics.
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 s
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(1)

Figure 3. Magnitudes of terms in the energy equation for a loop with constant

area (upper left: panel 1) and a loop with 51 = 5 and B0 = ! (upper right:

panel 2), in the absence of gravity. The lower plots show 51 = 50, B0 = !

(left: panel 3) and 51 = 5, B0 = 0.2! (right: panel 4), and are discussed in

Section 3.4. In each plot, conductive (black) and radiative (red) losses and

heating (blue) are shown. Where shown, the pink curve represents an effective

"heating" due to area divergence (see text). Conduction is a loss (gain) to the

right (left) of where it passes through zero. The loops all have 2L = 100 Mm

and & = 3.67 × 10−4 ergs cm−3 s−1.

In the "standard" picture of loops, the role of the TR is to ra-

diate away the total downward coronal heat flux (i.e. the sum of

the heat flux over the loop cross-section). The TR is thin with

!) '/!2 ∼ 0.1 − 0.15, and is the origin of 2/3 of the loop’s ra-

diation (Cargill et al. 2012a). When gravitational stratification is in-

cluded, the TR radiation predominates more. As the loop becomes

constricted, the volume available in the TR to radiate away the to-

tal coronal heat flux diminishes. Thus to obtain equilibrium the TR

and coronal density must both increase and/or the TR volume also

increase. Figure 2 shows that both occur. This simple picture of an

increase in coronal density and pressure and a thicker TR holds for

all cases we consider. The loop temperature profile adjusts so that

the higher density leads to the same radiative loss summed over the

entire loop. Since the loss function decreases with temperature, more

of the loop is at higher temperatures, and the profile ) (B) becomes

flatter (e.g. Vesecky et al. 1979; Martens 2010).

However, panel 5 of Figure 2 and Figure 3 show that the "standard"

picture of loops begins to break down as 51 increases. Considering

Figure 3 first, the upper left panel shows a loop with constant cross-

sectional area with conduction roughly equal to heating in the corona

and conduction roughly equal to radiation in the TR. Increasing 51
leads to a situation when conduction ceases to dominate the coronal

energy balance, as seen in the upper right panel. The cause is the

increase in the loop density such that coronal radiation becomes

more important than conduction to the TR. This arises at roughly 51 =

3.5. In terms of the temperature profile, the loop has become more

"isothermal" in the corona, a well known effect of area constriction

(Martens 2010). Also, the "effective heating" (as defined earlier) is

maximised at the top of the TR (top right panel of Figure 3) and

dominates radiation there.

Fixing)0 and varying& leads to similar results, with differences in

the exact numbers. Adopting the generalised radiative loss function

MNRAS 000, 1–10 (2020)
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of Klimchuk et al. (2008) leads to the �/'(B = !) ratio falling

below unity at 51 = 4.5. Finally, the red stars in Figure 2 show

results when gravitational stratification is included. This keeps the

apex �/'(B = !) ratio above unity for all the 51 considered here, but

it falls from 6 to 2 as 51 increases. Other quantities show expected

variations (e.g. �1 and =0) or little change ()0): the ratio !) '/! is

not shown because the two plots overlap.

We can also compare these results, especially the increase in loop

pressure with 51, with the TR studies of Rabin (1991) who prescribe

� = �()) (see Appendix B). This differs from the present work

in that Rabin does not solve for the thermal structure of the entire

atmosphere, but instead imposes a lower boundary condition on the

heat flux, and iterate on the loop pressure until a fixed temperature

is reached at a given height. The heat flux at that height is thus an

output of the model. Rabin (1991), see his Figure 1, considers three

TR area models that he calls "tee", "cone" and "bowl"4 . The volume

associated with each increases so that, based on our arguments above,

for identical area profiles and heat fluxes at the top of the model, one

would expect the tee to have a higher pressure than a cone which in

turn has a higher pressure than a bowl. Further, larger area factors

should have higher pressure than small ones. Comparison with the tee

models is rendered difficult by the heat fluxes at the upper boundary

differing by half an order of magnitude as the area factor changes.

This implies that the coronal part of the loop differs between the

cases. However, more constricted loops do show higher pressure.

The bowl and cone cases do permit the desired comparison. As the

area constriction increases in both, so does the pressure. And the cone

does have higher pressures than the bowl. Thus this work agrees with

our premise that what controls the loop conditions is the volume in

the TR able to radiate away a downward heat flux.

3.3 Large area variations

Modelling of coronal magnetic fields based on photospheric

magnetograms suggests that large area variations can arise.

For example, Mikić et al. (2013) and Froment et al. (2018)

considered a factor of 10 from chromosphere to apex,

while Asgari-Targhi & van Ballegooĳen (2012); Asgari-Targhi et al.

(2013) consider factors in excess of 100 in longer loops. Here we

consider much larger values of 51. Figure 4 and the lower left panel

of Figure 3 show the same quantities as Figure 2 and the upper panels

of Figure 3, with the black (red) stars showing the results without

(with) gravity. Without (with) gravity the ratio �/'(B = !) falls

below unity for 51 > 3(7) and the TR increases to between 40 and 50

% of the loop. Figure 3 shows how inconsequential conduction has

become in the coronal part of the loop. This in turn implies that the

coronal density should change little as 51 becomes large because the

coronal energy balance between heating and radiation is independent

of the cross-sectional area. Figure 4 shows that this is indeed the case.

Thus the "standard" loop picture has entirely broken down for these

large area variations. Further, in the no-gravity case, we see that �1

approaches unity when 51 exceeds 20. In these cases the loops are

isothermal over most of their length and, with the upper boundary

of the TR located at 0.4! or greater, the distinction between TR

and corona becomes unclear, and the formal definition of the top

of the TR given earlier is probably meaningless. A thin layer of

steep temperature gradient still exists, but it is confined to near the

4 The "tee" geometry resembles the object used to elevate a ball in golf prior

to hitting it into the water.
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Figure 4. As Figure 2 except for larger values of 51. In the upper right panel,

the * symbol denotes �) ' . For clarity, the ratio �/' is now shown on a log

scale. As before, black (red) symbols denote solutions without (with) gravity

included.

footpoint, far below !) ' . It deviates substantially from our formal

definition of transition region.

3.4 Different area profiles

We now consider what happens when B0 is varied for the same range

of 51 with B0 varying between 0.05L and 0.95L. Small values of B0
localise the area variation to the lower part of the loop so that there

is a larger volume in the TR available to radiate away the downward

heat flux. Figure 5 shows the results for 51 = 5 (stars) and 51 = 50

(circles) in the same format as Figure 2. The lower right panel of

Figure 3 shows the results for B0 = 0.2! and 51 = 5 so that the entire

TR is constricted. There are relatively small changes in =0 , and )0
and the area-associated "heating" now becomes strongly localised.

In Figure 5 we see that the density increases with B0 , as expected

when the loop becomes constricted over a greater part of its length.

With the exception of the ratio �1, there is relatively little change in

the loop properties as B0 increases.

3.5 Comparison with scaling laws

We now compare the scaling laws described in Section 3.1 with

exact solutions of the energy equation. Figure 6 shows the dif-

ference between the exact and scaling law solutions, normalised

with respect to the exact solutions, so that for example Δ= =

[=(4G02C) − =(B20;8=6)]/=(4G02C). The top two rows show Δ= and

Δ) respectively with B0 = ! and 0 6 51 6 5 and 0 6 51 6 50

in the left and right columns. The third and fourth rows show

0.05! 6 B0 6 ! for 51 = 5 and 51 = 50 (left and right columns).

The exact solutions and scaling laws can be compared in a number

of ways. The black stars use scaling law values calculated with the nu-

merical values of �1, !2 , !) ' and the various area factors obtained

by the numerical solution of the energy equation. However, there

are instances where a simpler approach is desirable when the scal-

ing laws are implemented without knowledge of the detailed energy

equation solution, as done in Eq (5) and (11) of Klimchuk & Luna

MNRAS 000, 1–10 (2020)



6 P.J. Cargill et al

0 1 2 3 4 5

109

0.5

1

1.5

2
n

 (
cm

-3
)

109

0 1 2 3 4 5

109

1

1.5

2

2.5

T
 (

K
)

106

0 1 2 3 4 5

109

1

2

3

4

5

C
1

0 1 2 3 4 5

s
a
 (109 cm) 109

0

1

2

3

C
/R

 (
s=

L)

0 1 2 3 4 5

s
a
 (109 cm) 109

0.2

0.4

0.6

L
T

R
/L

0 1 2 3 4 5

109

0

2

4

6

A
re

a

Figure 5. As Figure 2 except B0 is allowed to vary. 51 = 5 (stars) and 51 = 50

(circles). Black (red) symbols ignore (include) gravity.

(2019). To do this, we set !2 = !, �1 = 2. These are the red stars in

the panels of Figure 6. Finally, we use our scaling laws, with !2 and

!) ' from the exact solutions, but with �1 = 2, shown as the blue

stars in Figure 6.

We see that over all parameter ranges, the difference between the

actual and scaling law densities is relatively small, at most of order

20%. This arises because the density scaling law is a simple statement

that the energy deposited must equal that radiated. The temperature

that comes in via the loss function is a modest correction. Indeed the

largest errors in the density arise for loops with uniform area.

The temperature scaling law(s) perform less well. We see that the

agreement for small 51 is good given the assumptions used in obtain-

ing the scaling laws. Indeed, if we increase the 2/7 factor to 3.25/7

in the approximation of the heat flux, the agreement between the

temperatures becomes excellent.5 However, as 51 increases further,

the discrepancies in the apex temperature become more marked. In

particular the Klimchuk and Luna model shows significant deviation

since the assumption of a thin transition region clearly breaks down.

This could be attributed to the reduction of the heat flux to the TR.

On the other hand, the premise of the scaling laws is violated for

large 51, namely that one cannot equate conduction and radiation in

the loop. It seems as though the scaling laws should not be used once

the coronal conductive losses fall much below the radiative ones. The

earlier figures suggest that this is for 51 > 5. This is also when !) '

becomes a significant fraction of !.

4 TIME-DEPENDENT SOLUTIONS

We now solve the time-dependent EBTEL equations (12) and (13) for

a simple heating model. The results of the previous Section suggest

that we can retain �1 = 2, with the modifications of Cargill et al.

(2012a) provided the variation in area between base and apex is

small enough, of order 5. This in turn implies that the ratio !) '/! is

small and conduction is the dominant coronal loss mechanism up to

5 It is instructive to compare the expression (2�0^0/7))
7/2
0 /!2 with the

numerical value at the top of the TR. They differ by a factor two
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Figure 6. Difference between the full solution of the energy equation and

scaling law values of) and =, normalised wrt the full solution. Black, red and

blue stars show, respectively, the full scaling laws, those of Klimchuk & Luna

(2019), and the full laws, but with �1 = 2. The upper panels show variations

of 51 with small (large) ranges of 51. The lower panels show variations of B0
for 51 = 5 and 50 respectively. Gravity is excluded in all cases.

the start of the radiative phase. These are essential assumptions of the

time-dependent EBTEL model. Thus the parameters �1, �2 and �3

are as in the earlier papers and the Klimchuk et al. (2008) radiative

losses are used. It is assumed that !) '/! = 0.15. Figure 7 shows a

case where the loop has 2L = 80, with a triangular pulse of duration

200 sec and peak 0.1 ergs cm−3 s−1. There is a background heating

of 3 × 10−5 ergs cm−3 s−1 to ensure that (a) the loop starts from an

equilibrium and (b) during the cooling phase, negative temperatures

and densities do not arise. The four panels show the temperature,

density, pressure and) −= phase plane. The solid lines are the results

for a constant area. We consider two extremes in area variation: one

where �0 = �) ' (dashed), and one where �0 is comparable to the

coronal scale, �0 = 2�) ' (dotted). These are specified at C = 0, and

remain unchanged as the loop evolves. We consider a factor 3 total

divergence (i.e. �2 = 3�) '). The case with �0 = �) ' is probably

the most realistic for a loop (i.e thin TR and mostly coronal field

change), as discussed in Guarrasi et al. (2014).

Even with such a relatively modest area change, the changes from

uniform area are significant. In general terms, the rate of energy loss

from the corona by either thermal conduction or enthalpy is less for a

constricted loop than if there were no constriction. Consequently, the

coronal temperature increases more quickly during the heating phase

and decreases more slowly during the initial cooling phase. While the

time of this peak temperature is similar for all cases, corresponding

approximately to the peak of the heating, the highest temperatures

arise when the area variation lies entirely above the TR. Here the heat

flux into the TR is constricted by a factor three (�0/�2) compared

to a factor of two when some area variation in the TR is allowed.

The maximum density is similar in all cases, of order 4×109 cm−3,

but the subsequent evolution differs considerably. The rise in density

is determined by a competition between the downward heat flux
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Figure 7. The evolution of a loop evaluated from the time-dependent EBTEL

equations with uniform area (solid), �) ' , �0 and �2 = 1, 1, 3 (dashed) and

1, 2 and 3 (dotted).

and the (lack of) ability of the TR to radiate this away. Thus the

longest delay in the maximum density with respect to temperature

arises for the smallest TR volume, the dashed curve. The decline in

density arises due to two effects: in situ radiation from the corona that

reduces the gravitational scale height, and TR radiation powered by

the downward enthalpy flux. The latter is limited by the TR volume,

so this density decline is (initially) slower for the dashed curve.

However, in both cases there is a significant difference from the

uniform area case at large times. For uniform area, there is a smooth

decline to small density. For the non-uniform area cases, there is a

catastrophic decline, occurring after 3500 sec for �0 = 2�) ' and

after 4500 sec for �0 = �) ' . This arises because in both cases the

coronal density is held higher than is the case with constant area

by the relative inefficiency of the downward enthalpy flux. This is a

stronger effect for the narrow TR. Eventually as the temperature falls,

the high coronal density leads to overwhelming radiative losses and

the loop cools catastrophically.

4.1 Comparison between EBTEL and one-dimensional

hydrodynamic simulations

We now show a comparison of EBTEL simulations with results

from the adaptive mesh one-dimensional hydrodynamic Hydrad code

(Bradshaw & Cargill 2013; Reep et al. 2019). The loop parameters

and heating functions are as in Figure 7. In the Hydrad models the

loop has a total length of 80 Mm (so that the half-length L = 40 Mm)

to which is attached a stratified chromosphere at each footpoint with

thickness 5 Mm. Note that L does not include the chromosphere.

Both Hydrad and EBTEL use the radiative losses of Klimchuk et al

(2008). Two (normalised) area models are considered:

�(B) = (1 + C0=ℎ@ (cB/!B ))
;>63/;>62 (19)

�(B) = (1 + B8=@ (cB/2!));>63/;>62, (20)

which localise the area variation in the TR and corona respectively. In

the tanh profile, !B = 20 Mm. The area at the loop apex is three times

that at the top of the chromosphere. �) ' and �0 are calculated using

these assumed profiles with !) ' = 0.15! and are held constant in

EBTEL as the loop evolves. For the tanh profile, the ratios �) '/�2
and �0/�2 decrease markedly as q increases while the sin profiles

show little variation with q. The exact values in each simulation are

stated in the figure captions but Eq (19) and (20) present differing

challenges for a comparison between Hydrad and EBTEL. In terms

of Figure 7, the sin profile is closest to the dashed lines and the tanh

profile to the dotted lies, though the precise values of the areas are

different.

Cases with q = 0 - 4 have been run for both area profiles. Figures

8 and 9 show results for the tanh and sin profiles respectively for

q = 1 (upper panels) and 4 (lower panels). The cases with q = 2

and 3 give results that are intermediate between those shown. The

solid (dashed) lines show Hydrad (EBTEL) solutions. The red lines

show values averaged over the coronal portion of the loop and the

black lines those at the apex. For EBTEL, the coronal averages are

as defined in Eq (12) and (13). For Hydrad the coronal averages are

evaluated over the upper 85% of the loop above the top of the initial

model chromosphere (i.e. the top 34 Mm), as is the case with EBTEL

under the assumption !) '/! = 0.15. This ensures that we compare

like-with like. Note also that the Hydrad averages are computed over

the same spatial domain throughout the simulations. For apex values,

we average the Hydrad solutions over the top 20% of the loop since

past experience suggests that using precise apex values are overly

noisy. For EBTEL, the apex temperature is related to the average

by )0 = )/�2, where �2 = 0.89 (Klimchuk et al, 2008, Cargill

et al, 2012a). The apex density is related to the average using the

formalism in Section 3.1 of Cargill et al (2012a) which accounts for

gravitational stratification. [For reference, the Hydrad solutions for

uniform area have a peak average temperature and density of 9.4

MK and 4.4 × 109 cm−3 respectively. The temperature falls below 1

MK at 2300 sec and the density to 2.5 × 108 cm−3 at 3600 sec. The

density falls linearly as a function of time between its peak and this

value.]

In general, the Hydrad solutions for non-uniform area have the

same generic properties as the EBTEL ones shown in the previous

figure, namely a higher peak temperature, delay in the time of the

maximum density, and an enhanced density throughout the radiative

cooling phase when compared with the uniform area cases. Also, the

comparison of the Hydrad and EBTEL temperatures (both apex and

average) show a level of agreement comparable with our previous

studies (see Cargill et al. (2012a, 2015); Barnes et al. (2016a)). As

the area constriction increases, the peak temperatures obtained by

both EBTEL and Hydrad increase, as expected from Figure 7. The

peak EBTEL values exceed the peak Hydrad ones by 1 – 2 MK,

a percentage difference that is of the same order as we found for

uniform area (Cargill et al. 2012a). This higher peak then leads to

slightly higher values of the EBTEL temperatures throughout the

decay phase, though the rate of temperature decline is very similar

in EBTEL and Hydrad.

As noted in Cargill et al. (2012b), obtaining good agreement be-

tween the density evolution in approximate and exact numerical mod-

els is more challenging. For uniform area, there is a tendency for the

EBTEL density to exceed the Hydrad one, the value differing from

case-to-case. In all cases shown here, the Hydrad peak density now

exceeds the EBTEL one, though in all but the tanh area profile with

q = 1, by a small amount. Even in this case, the excess is of order

a few %. In the draining phase, in all cases Hydrad and EBTEL

show sustained higher densities than for uniform area. This general

agreement of the densities between the two methods indicates that

EBTEL is getting the important process of the TR response to a

strong downward heat flux correct for these non-uniform areas. It is

the difficulty of modelling this process with one-dimensional hydro-

dynamic codes without adequate numerical resolution that has been

a primary motivation for our development of EBTEL.
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Figure 8. A comparison of Hydrad and EBTEL solutions of an impulsively

heated loop with an area profile given by the tanh distributions. The red

(black) lines are the average and apex values, with solid (dashed) being

Hydrad (EBTEL), as summarised in the embedded box in the upper right

panel. Temperature and density are shown as a function of time. The two

upper (lower) panels show q = 1 and 4 respectively. In EBTEL, the upper

panels have �) ' = 1.72, �0 = 2.38, �2 = 2.93 and the lower ones �) ' =

1.12, �0 = 1.48, �2 = 2.80. The sub-panel in the temperature plots shows

the various temperatures for the first 400 seconds of the simulation.

Figure 9. As Figure 8 except the area profile given by the sin distributions.

In EBTEL, �) ' = 1.19, �0 = 1.39, �2 = 2.4 and the lower ones �) ' =

1.0, �0 = 1.0, �2 = 1.83

Looking at the tanh cases, we expect @ = 4 to have a more sus-

tained high density than @ = 1 since the TR is more constricted

and this is what we find. For the sin cases, this effect is still present

but less noticeable since the change in constriction as q increases is

smaller. We also note that in the final stages Hydrad does not see

as dramatic a catastrophic draining as EBTEL. One possible cause

is that Hydrad may be better equipped to sustain a low-temperature

hydrostatic equilibrium than EBTEL due to a pile-up of plasma at

the footpoints, or a different form of cooling such as that discussed

in Cargill & Bradshaw (2013), and not modelled by EBTEL, is op-

erating.

An important observational diagnostic of the heating in the core

of active region loops is the temperature dependence of the emission

measure (�" ())) which scales in the range )2 to )4 for temper-

atures below 3 MK (Warren et al. 2012; Cargill 2014; Barnes et al.

2019). For a single impulsive heating event, or a nanoflare train

with well-separated heating bursts, at such temperatures the core

of the active region loop is in the radiative cooling phase. In this

regime Cargill (1994) and Cargill & Klimchuk (2004) showed that

�" ()) ≃ =2gA03 where gA03 is the radiative cooling time at a given

instant, defined as gA03 ≃ 3:)1−U/j= for a power law radiative loss

function of the form Λ()) = j) U . Thus �" ()) ≃ =)1−U which for

the commonly-used value U = −1/2 gives �" ()) ≃ =)3/2 . When

the loop area is uniform, the radiative/enthalpy cooling phase has

) ≃ =2 (Cargill et al. 1995) so that �" ()) ≃ )2 (e.g. Cargill 2014).

With an area variation, Figures 7 - 9 suggest that the density remains

higher in this cooling phase than for constant area. Taking the ex-

treme case of constant-density cooling, setting = as a constant in the

above expressions gives �" ()) ≃ )3/2. Thus, despite the different

behaviour of the density in the radiative cooling phase, the temper-

ature dependence of �" ()) shows little change in the presence of

the modest area variations we consider, and is almost certainly not

observable (Guennou et al. 2013). Note also that for loops with non-

uniform area, the enhanced density in the radiative phase implies

a higher value of the coronal emission measure �" ()) at a given

temperature.

5 CONCLUSIONS

We have presented models that discuss the role of a non-uniform

cross-sectional area in static and dynamic coronal loops. The results

in all stages can be understood in simple terms that considers the

response of the radiative losses from a constricted transition region

to heat and enthalpy fluxes from the corona. For static loops, the

smaller TR area leads to a higher coronal densities and a broader TR

so that the downward heat flux may be radiated away. For impulsively-

heated loops, the constricted TR leads to higher coronal temperatures

during the heating phase and a sustained high density followed by

rapid cooling in the radiative phase when the TR is unable to radiate

the downward enthalpy flux.

For large area variations, the standard picture of a static loop

breaks down, with the coronal energy balance being primarily be-

tween heating and radiation as opposed to between primarily heat-

ing and downward conduction. These results suggest that caution is

needed in modelling such loops with conventional concepts of loop

energetics, as shown by the failure of the temperature scaling laws.

Since the EBTEL model makes use of some results from static

loop models, we are able to set constraints on when area variations

can be included in EBTEL. If we require !) ' to be small compared

with ! and conductive losses dominate during the heating and initial

cooling phase, then EBTEL is limited to quite modest area varia-
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tions, typically a factor four between base and apex. Nonetheless, the

EBTEL results, and the comparison with Hydrad, indicate clearly

the different physics to be expected in loops with non-uniform ar-

eas, although full (and computationally expensive) one-dimensional

simulations will be required to verify this for large area variations.

APPENDIX A: A NOTE ON THE AVERAGE DENSITY AND

PRESSURE IN A LOOP WITH NON-UNIFORM

CROSS-SECTION

While the average coronal density is clearly defined for a loop with

uniform cross-section, a more detailed investigation is required for

non-uniform area. For the mass equation (7), integrating the left hand

side over the coronal loop portion formally gives:

!2�2
3=F

3C
= =0�0E0 (A1)

where

=F =
1

�2!2

∫

�(B)=(B)3B. (A2)

is the area-weighted average density. For constant area, = and =F are

the same, but for non-uniform area =F requires spatial information

about the density and area profiles. In EBTEL we assume that =F = =,

where = is the average density, (1/!2)
∫

=3B.

Justification for this can be addressed by comparing =F and n

in hydrostatic loops: hydrostatic loop models underpin much of

EBTEL due to the assumption of subsonic flows (Klimchuk et al.

2008; Cargill et al. 2012a). We have calculated = and =F for all the

static loop models considered in Section 3. We find that the ratio

=/=F satisfies 1 < =/=F < 1.05 in all cases. The maximum of this

ratio does not arise for the maximum 51. As 51 increases two effects

arise. The coronal portion of the loop becomes more isothermal (see

Figure 3), so that the density profile is also flatter. Secondly, the ac-

tual extent of the corona decreases as the ratio !2/! decreases, as

seen in Figures 2 - 5. In both cases, the difference between =F and =

will then decrease. Thus the small discrepancy between =F and = for

large 51 is somewhat artificial since the basic assumptions needed

for EBTEL (in particular a narrow TR) are violated, as discussed

elsewhere.

We also examined a much longer loop with 2L = 400 Mm and a

peak temperature of order 1.5 MK sustained by a heating of 10−5

ergs cm−3 s−1. Such lengths are the longest used in contemporary

models (e.g. Asghari-Tahari et al, 2013; Froment et al, 2018). In this

case the ratio =/=F rises to 1.14 for some values of 51. As with the

shorter loops, the maximum value of the ratio does not occur for

the largest 51, but for an intermediate value, 51 = 5. So caution is

warranted using EBTEL during evolution of long loops with non-

uniform cross-sections at low temperatures.

We can also define an area-weighted pressure in the same way. The

ratio ?/?F , where p is now the average pressure is closer to unity

than =/=F , of order 1.03 for the shorter loops and 1.1 for the longer.

Two further points should be made. One is that EBTEL assumes

a smooth variation of the plasma parameters throughout the loop,

with the temperature and density being not far removed from that ex-

pected in a hydrostatic state: this is equivalent to our assumption of

subsonic flows. Thus EBTEL cannot model cases involving localised

plasma clumping or cooling when =F and n may differ considerably.

Secondly, as the temperature increases during impulsive heating and

subsequent cooling, gravitational stratification becomes less impor-

tant and the ratio =/=F decreases towards unity.

APPENDIX B: ANALYTIC SOLUTIONS FOR STATIC

LOOPS

It was pointed out by Levine & Pye (1980) and Martens (2010) that

the assumption

�(B)/�0 = () (B)/)0)
X (B1)

permitted analytic solutions of the energy equation for a static loop

without gravity and with a radiative loss function that is a single

power law over all temperatures: Λ()) = j) U , where subscript “a”

corresponds to a quantity at the loop apex. We discuss the limi-

tations of the assumption in Eq (B1) later, but the analytic solu-

tions provide valuable guidance for more general and realistic area

profiles discussed in Section 3. We follow the analysis of Martens

(2010), see also Kuin & Martens (1982), and define the variable

[ = ()/)0)
7/2+X . For a static loop and spatially constant heating,

retaining the notation of Martens, the static energy equation is then:

n
32[

3B2
= [` − b[a , ` = −

(2 − U − X)

7 + 2X
, a =

2X

7 + 2X
,

b = &)2−U
0 /(?2j), n =

^0)
11/2−U
0

(7/2 + X)?2!2j

(B2)

where the pressure is constant. Defining the parameter _ = (3/2 +

U)/(2(2− U)), the energy equation is solved for a variable D = [a−`

as:

B/! = VA (D, _ + 1, 1/2) (B3)

where VA is the normalised incomplete beta function and ` − a =

−(2 − U)/(7/2 + X). Applying appropriate boundary conditions at

loop base and apex eliminates b and n from Eq (A2) and gives the

scaling laws:

& =
?2j(7/2 + 2X)

)2−U
0 (3/2 + 2X + U)

,

?! = )
(11−2U)/4
0

(

^0

j

)1/2
(3 + 4X + 2U)1/2�(_ + 1, 1/2)

4 − 2U

(B4)

where B(a,b) is the beta function6 . Removing the pressure, these can

be rewritten to give an expression for =0 and )0 , analagous to Eq

(14) and 15):

)
7/2
0 = (7!2/2^0)&

2(2 − U)2

(1 + 4X/7)�(_ + 1, 1/2)2
,

=2
=
& (3/2 + 2X + U)

Λ())(7/2 + X)

(B5)

Inverting u to obtain T, we find ) ∼ 1/D (7/2+X) (a−`) ∼ D (2−U) , so

that, given the prescription (B1), the spatial structure of the tempera-

ture for a given value of )0 is independent of X. This is confirmed by

numerical solutions of the energy equation7 . Following Cargill et al.

(2012a) we can also evaluate the temperature at the top of the TR

()0). This occurs when the right hand side of (B2) vanishes:

)0

)0
=

[

7/2 + X

3/2 + 2X + U

]−1/(2−U)

(B6)

6 Eq (48) – (50) of Martens have a number of typos, corrected here for

uniform heating. Bray et al. (1991) also provide the correct scalings.
7 Note that while Figure 4 of Martens (2010) shows T(s) differing between

uniform and variable loop cross-section, a heating function scaling as ) −3/2,

as given by classical Ohmic heating, is used.
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so that as X increases, )0/)0 also increases. [The analytic solution

for �1, defined earlier, and discussed by Cargill et al. (2012a) cannot

be repeated when X > 0.]

We have solved Eq (B2) for a range of area profiles, defining X as

X = ;>610 (�<0G)/;>610 ()0/105). �<0G = �0/�() = 105) ranges

from 1 to 10 so that X varies between 0 and 0.77. A comparison of the

solution of Eq (B2) with that of Eq (1) shows excellent agreement8.

For a loop with U = −1/2, ! = 50"< and)0 = 2" , we find that as

X increases, �1 increases from 1.72 to 2.69, )0/)0 from 0.61 to 0.76

and !) '/! from 0.11 to 0.24. These analytic solutions reproduce

the trends shown in Section 3.

In closing, we note that despite permitting analytic solutions, the

area-temperature relationship is highly artificial, even in the more

general formalism introduced by Rabin (1991). A credible scenario

for coronal plasma structure is that the large-scale magnetic field of,

for example, an active region is determined by the (global) dynamo

process, within which smaller-scale processes provide the heating.

Within this active region are many flux elements with cross-sectional

areas A(s) given by the large-scale magnetic field. For a static loop,

T(s) is determined by the solution of the energy equation for this

prescribed A(s), and T(s) will not satisfy (B1) for any but the most

serendipitous situations. It might be argued that the area in (B1)

adjusts to the calculated temperature profile, but in a low-beta coronal

plasma such a scenario is not credible, as was demonstrated in the

simulations of Guarrasi et al. (2014). These problems become more

severe in dynamic loops discussed in Section 4.
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